\square

VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD

B.E. (CBCS) I-Semester Main Examinations, Dec.-2018 / Jan. 2019

Waves and Optics
 (EEE \& ECE)

Time: $\mathbf{3}$ hours
Max. Marks: 60
Note: Answer ALL questions in Part-A and any FIVE from Part-B

Part-A ($10 \times 2=20$ Marks) Distinguish between damped oscillations and forced oscillations. Define Quality factor of Oscillations. Explain Rayleigh criterion for limit of Resolution. If an intensity I_{0} falls on a polarizer with its electric field making an angle of 30° with the transmission axis, find the intensity of the resultant of incident light is plane polarized. 5. Why laser source is finding numerous engineering applications when compared with ordinary light source? Discuss. Mention four important applications of lasers in engineering. What are different types of losses in optical fibre? List the two light sources that are used in optical fibers. Write four Maxwell equations in integral form. In framing the electromagnetic wave equations, which basic law (Gauss $/$ Ampere / Faraday) was modified by Maxwell and why? $\text { Part-B }(5 \times 8=40 \mathrm{Marks})$ 11. a) What are forced oscillations? Derive an equation for forced oscillator and discuss about its solution. b) A particle execuites SHM with a period of 0.002 seconds and amplitude 10 cm . Find its acceleration when it is 4 cm away from its mean position. 12. a) Distinguish between Interference by Division of Wave front and Division of amplitude. b) Prove that the diameter of Newton's interference dark ring is proportional to the square root of the order of ring. 13. a) Explain the working of $\mathrm{He}-\mathrm{Ne}$ laser with the help of energy level diagram. b) What is population inversion? Explain the necessity of population inversion for lasing. 14. a) Derive an expression for numerical aperture of an optical fiber. b) An optical fiber has a core of refractive index 1.55 and cladding of 1.50. Calculate numerical aperture c) Mention 4 important applications of optical fiber.		$\begin{array}{llll}2 & 3 & 1 & 1,12 \\ 2 & 1 & 1 & 1,12 \\ 2 & 2 & 2 & 1,12 \\ 2 & 3 & 2 & 1,12 \\ 2 & 5 & 3 & 1,12 \\ 2 & 2 & 3 & 1,12 \\ 2 & 3 & 4 & 1,12 \\ 2 & 3 & 4 & 1,12 \\ 2 & 1 & 5 & 1,12 \\ 2 & 5 & 5 & 1,12 \\ & & & \\ 6 & 2 & 1 & 1,12 \\ 2 & 3 & 1 & 1,12 \\ 3 & 4 & 2 & 1,12 \\ 5 & 1 & 2 & 1,12 \\ 5 & 2 & 3 & 1,12 \\ 3 & 3 & 3 & 1,12 \\ 4 & 2 & 4 & 1,12 \\ 2 & 2 & 4 & 1,12 \\ 2 & 4 & 4 & 1,12\end{array}$			

15. a) State Poynting theorem and prove E X H represents the power flow per unit area.
b) Distinguish between displacement current and conduction current.
16. a) Define and get expressions for relaxation time and logarithmic decrement
b) Explain the phenomenon of double refraction.
17. Answer any two of the following:
a) Compare three level and four level pumping schemes of lasers.
b) Explain optical communication system with the help of block diagram.
c) Obtain the wave equation for electric field in non-conducting medium from

6	2	5	1,12
2	4	5	1,12
4	2	1	1,12
4	2	2	1,12
4	3	3	1,12
4	2	4	1,12
4	4	5	1,12

M: Marks; L: Bloom's Taxonomy Level; CO: Course Outcome; PO: Programme Outcome

S. No.	Criteria for questions	Percentage
1	Fundamental knowledge (Level-1 \& 2)	55%
2	Knowledge on application and analysis (Level-3 \& 4)	40%
3	*Critical thinking and ability to design (Level-5 \& 6) (*wherever applicable)	5%

